Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
STAR Protoc ; 5(1): 102912, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38427569

RESUMO

Seasonality in laboratory healthcare data is associated with possible under- and overdiagnoses of patients in the clinic. Here, we present a protocol to analyze electronic health record data for seasonality patterns and adjust existing reference intervals for these changes using R software. We describe steps for preprocessing population-wide patient laboratory data into a single dataset. We then detail steps for defining strata, normalizing to median, and fitting data to selected functions. For complete details on the use and execution of this protocol, please refer to Muse et al. (2023).1.


Assuntos
Estações do Ano , Humanos
2.
BMC Med Inform Decis Mak ; 24(1): 62, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438861

RESUMO

BACKGROUND: Variation in laboratory healthcare data due to seasonal changes is a widely accepted phenomenon. Seasonal variation is generally not systematically accounted for in healthcare settings. This study applies a newly developed adjustment method for seasonal variation to analyze the effect seasonality has on machine learning model classification of diagnoses. METHODS: Machine learning methods were trained and tested on ~ 22 million unique records from ~ 575,000 unique patients admitted to Danish hospitals. Four machine learning models (adaBoost, decision tree, neural net, and random forest) classifying 35 diseases of the circulatory system (ICD-10 diagnosis codes, chapter IX) were run before and after seasonal adjustment of 23 laboratory reference intervals (RIs). The effect of the adjustment was benchmarked via its contribution to machine learning models trained using hyperparameter optimization and assessed quantitatively using performance metrics (AUROC and AUPRC). RESULTS: Seasonally adjusted RIs significantly improved cardiovascular disease classification in 24 of the 35 tested cases when using neural net models. Features with the highest average feature importance (via SHAP explainability) across all disease models were sex, C- reactive protein, and estimated glomerular filtration. Classification of diseases of the vessels, such as thrombotic diseases and other atherosclerotic diseases consistently improved after seasonal adjustment. CONCLUSIONS: As data volumes increase and data-driven methods are becoming more advanced, it is essential to improve data quality at the pre-processing level. This study presents a method that makes it feasible to introduce seasonally adjusted RIs into the clinical research space in any disease domain. Seasonally adjusted RIs generally improve diagnoses classification and thus, ought to be considered and adjusted for in clinical decision support methods.


Assuntos
Doenças Cardiovasculares , Humanos , Doenças Cardiovasculares/diagnóstico , Laboratórios , Instalações de Saúde , Confiabilidade dos Dados , Aprendizado de Máquina
3.
Transplant Direct ; 10(2): e1576, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38274475

RESUMO

Background: Kidney transplantation is the treatment of choice for patients with end-stage renal disease. Considerable clinical research has focused on improving graft survival and an increasing number of kidney recipients die with a functioning graft. There is a need to improve patient survival and to better understand the individualized risk of comorbidities and complications. Here, we developed a method to stratify recipients into similar subgroups based on previous comorbidities and subsequently identify complications and for a subpopulation, laboratory test values associated with survival. Methods: First, we identified significant disease patterns based on all hospital diagnoses from the Danish National Patient Registry for 5752 kidney transplant recipients from 1977 to 2018. Using hierarchical clustering, these longitudinal patterns of diseases segregate into 3 main clusters of glomerulonephritis, hypertension, and diabetes. As some recipients are diagnosed with diseases from >1 cluster, recipients are further stratified into 5 more fine-grained trajectory subgroups for which survival, stratified complication patterns as well as laboratory test values are analyzed. Results: The study replicated known associations indicating that diabetes and low levels of albumin are associated with worse survival when investigating all recipients. However, stratification of recipients by trajectory subgroup showed additional associations. For recipients with glomerulonephritis, higher levels of basophils are significantly associated with poor survival, and these patients are more often diagnosed with bacterial infections. Additional associations were also found. Conclusions: This study demonstrates that disease trajectories can confirm known comorbidities and furthermore stratify kidney transplant recipients into clinical subgroups in which we can characterize stratified risk factors. We hope to motivate future studies to stratify recipients into more fine-grained, homogenous subgroups to better discover associations relevant for the individual patient and thereby enable more personalized disease-management and improve long-term outcomes and survival.

4.
Patterns (N Y) ; 4(8): 100778, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37602220

RESUMO

We identified mortality-, age-, and sex-associated differences in relation to reference intervals (RIs) for laboratory tests in population-wide data from nearly 2 million hospital patients in Denmark and comprising more than 300 million measurements. A low-parameter mathematical wave-based modification method was developed to adjust for dietary and environment influences during the year. The resulting mathematical fit allowed for improved association rates between re-classified abnormal laboratory tests, patient diagnoses, and mortality. The study highlights the need for seasonally modified RIs and presents an approach that has the potential to reduce over- and underdiagnosis, affecting both physician-patient interactions and electronic health record research as a whole.

5.
Sci Rep ; 9(1): 9619, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31270362

RESUMO

Functional human-on-a-chip systems hold great promise to enable quantitative translation to in vivo outcomes. Here, we explored this concept using a pumpless heart only and heart:liver system to evaluate the temporal pharmacokinetic/pharmacodynamic (PKPD) relationship for terfenadine. There was a time dependent drug-induced increase in field potential duration in the cardiac compartment in response to terfenadine and that response was modulated using a metabolically competent liver module that converted terfenadine to fexofenadine. Using this data, a mathematical model was developed to predict the effect of terfenadine in preclinical species. Developing confidence that microphysiological models could have a transformative effect on drug discovery, we also tested a previously discovered proprietary AstraZeneca small molecule and correctly determined the cardiotoxic response to its metabolite in the heart:liver system. Overall our findings serve as a guiding principle to future investigations of temporal concentration response relationships in these innovative in vitro models, especially, if validated across multiple time frames, with additional pharmacological mechanisms and molecules representing a broad chemical diversity.


Assuntos
Procedimentos Analíticos em Microchip , Modelos Teóricos , Farmacocinética , Descoberta de Drogas/métodos , Humanos , Dispositivos Lab-On-A-Chip , Procedimentos Analíticos em Microchip/métodos , Modelos Biológicos , Especificidade de Órgãos , Pesquisa Translacional Biomédica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...